La cantidad de sales en solución afecta varios procesos físicos importantes, así como propiedades importantes del agua y de substancias disueltas en agua tales como: densidad, viscosidad, tensión superficial, presión osmótica, punto de fusión, punto de ebullición y solubilidad de gases.
Densidad: Los cuerpos de agua salados tienden a desarrollar una estratificación termal con mayor facilidad que los cuerpos de agua dulce. Esto se debe a que los cambios en densidad generados a lo largo de un gradiente de temperatura son más pronunciados en agua salada que en agua dulce. Por otro lado, según aumenta la concentración de sales disueltas, disminuye la temperatura a la que se alcanzan la densidad máxima y el punto de congelación del agua. Dado que las sales no pueden acomodarse dentro de la estructura látice del hielo, su presencia tiende a inhibir la congelación. De ahí que, aguas con una salinidad de un 3.2% comienzen a congelarse a -1.74°C. Según el agua comienza a congelarse se excluyen las sales, de tal forma que el agua remanente en estado líquido presenta una salinidad mayor y por consiguiente, un punto de congelación menor. En consecuencia, no le podemos asignar un punto de congelación fijo al agua de mar.
El agua de mar es, pues, significativamente más densa que el agua dulce, debido a que las sales disueltas incrementan la densidad del agua. La diferencia en densidad entre cuerpos de agua que presentan diferencias substanciales en salinidad es patente en aquellas áreas donde agua dulce, proveniente de un río, entra al océano. En estas áreas conocidas con el nombre de estuarios, se forma una capa superficial de agua dulce que se mezcla muy lentamente con el agua de mar. El agua salada, siendo más densa, se extiende por debajo de la corriente de agua dulce, formando una cuña de agua de mar. Dicha cuña se puede desplazar corriente arriba en el río, dependiendo de la morfometría del estuario, la velocidad y turbulencia del flujo de agua dulce, y la altura y energía del oleaje en el mar. La salinidad, y por ende la densidad, de aguas oceánicas también varía a lo largo del perfil de profundidad y de una latitud a otra. El calentamiento de las aguas superficiales por la radiación solar afecta la distribución de la temperatura, salinidad y densidad en la columna de agua. Los valores que se registran de estos tres parámetros en aguas superficiales se extienden por aproximadamente los primeros 200 metros de profundidad. A partir de ±200 metros de profundidad se producen cambios rápidos en temperatura y salinidad que a su vez repercuten en cambios rápidos en la densidad del agua. Las zonas de cambio rápido se conocen con los nombres de picnoclino (gradiente densidad), haloclino (gradiente de salinidad) y termoclino (gradiente de temperatura). Hay también variaciones significativas en los perfiles verticales de los tres parámetros antes mencionados, según nos trasladamos de un área climática a otra. Dichas variaciones en el perfil vertical entre latitutes geográficas y las variaciones a lo largo del perfil de profundidad en una localidad impactan la fisiología, reproducción, morfología, distribución, diversidad y el comportamiento de los organismos superiores y microorganismos que habitan en el ambiente oceánico. Al mismo tiempo, dichas variaciones generan cambios en otras propiedades del agua, afectan los patrones de circulación de masas de aguas oceánicas y en consecuencia, afectan la translocación vertical de nutrientes en la columna de agua y el movimiento horizontal del plancton y nutrientes.
La viscosidad del agua es otro parámetro afectado por los cambios en salinidad. La viscosidad es afectada por dos variables: temperatura y salinidad. La viscosidad del agua aumenta con la salinidad, pero es más afectada por la disminución en temperatura. Los cambios en viscosidad del agua pueden afectar el desplazamiento de organismos, así como la sedimentación de material particulado y microorganismos sésiles. El aumento en densidad y viscosidad del agua generados por una disminución en temperatura y aumentos en la salinidad pueden dificultar el movimiento de microorganismos mótiles. Estos tendrían que invertir una mayor cantidad de energía para vencer la resistencia que les ofrece el medio. Dicha demanda de energía se torna crítica, cuando los nutrientes escasean o los microorganismos enfrentan temperaturas bajas que reducen su actividad metabólica. Para los organismos sésiles, su caída a través de masas de agua más densas puede significar una reducción en su velocidad de sedimentación. La razón de sedimentación de un organismo depende de tres factores principales: tamaño del organismo, la diferencia en densidad entre el organismo y el medio acuoso que le rodea y la viscosidad. Mientras más pequeño es un organismo menor será su velocidad de sedimentación. Por otro lado, es también un hecho que el movimiento browniano se reduce significativamente en soluciones viscosas. El movimiento browniano puede ser una contrafuerza a la gravitación, que permite a microorganismos sésiles y partículas coloidales, evitar su caída a los sedimentos por largos periodos de tiempo. Algunos microorganismos fotosintéticos sésiles (ej. algunas cianobacterias) han desarrollado la capacidad de controlar su posición en la columna de agua, utilizando vesículas de gas. Las vesículas de gas le permiten a estos microorganismos modular su densidad, para responder adecuadmente a cambios en la intensidad lumínica y disponibilidad de nutrientes limitantes (ej. CO2, nitrógeno y fósforo). De igual forma, muchas algas planctónicas aumentan su área superficial produciendo espinas o proyecciones externas sobre su superficie celular. Dichas proyecciones pueden reducir su velocidad de sedimentación aumentando su resistencia al desplazamiento o caída a través de la columna de agua. Otros organismos se valen de la acumulación de lípidos para disminuir su densidad y así contrarrestar la fuerza gravitatoria
Tensión superficial: Las sales disueltas, en adición a aumentar la densidad del agua y la viscosidad, también aumentan la tensión superficial. En ambientes marinos un gran número de organismos vive en la interfase agua - aire. Los organismos que ocupan dicho hábitat se conocen con el nombre de neuston. Dada la alta tensión superficial de esta zona, se acumulan en ella una mayor concentración de sales y materia orgánica disuelta, que en la columna de agua. La acumulación de materia orgánica disuelta o adherida a partículas que flotan en la superficie sostiene poblaciones bacterianas con densidades que pueden ser de 10 a 1000 mayores a las densidades registradas en aguas bajo la superficie. Las bacterias en el neuston, son a su vez fuente de alimento para poblaciones de zooplanton y etapas larvales de crustáceos. Estos organismos junto con las bacterias son a su vez fuente de alimento para organismos que ¨caminan sobre la superficie" o que flotan. Dicho grupo incluyen insectos marinos, gastrópodos pelágicos y cnidarios.
Presión osmótica: La presión osmótica del agua aumenta proporcionalmente con aumentos en la salinidad. Cambios en la salinidad pueden ocasionar efectos osmóticos letales. Se han identificado tres grupos de organismos halofílicos a base de su preferencia por determinadas concentraciones de sal: halofílicos halodúricos (concentración óptima de sal, 2 a 5%); halofílicos moderados (concentración óptima de sal, 5 a 20%) y halofílicos extremos (20 a 30%). Ingram demostró que los organismos halofílicos se encuentran en equilibrio osmótico con su ambiente. En otras palabras, ellos tienen en su protoplasma la misma concentración de sales que hay en el medio externo. El estudio de los requerimientos nutricionales de bacterias marinas, ha revelado que dichas bacterias requieren de iones de sodio para su crecimiento. Esto implica que la necesidad de sales para crecer va más allá de establecer un equilibrio ósmotico con su ambiente, sino que también existe una necesidad por componentes iónicos muy particulares. Las bacterias marinas generalmente están adaptadas a los rangos de salinidad que presenta su ambiente (+3.5%). Cambios moderados en salinidad pueden generar cambios morfológicos y fisiológicos. Se ha observado, por ejemplo, que bacterias con forma de bacilos cortos forman filamentos alargados cuando la salinidad aumenta. También se ha observado que un aumento en la salinidad inhibe la oxidación bacteriana de ácidos orgánicos y azúcares. Una disminución en salinidad y por ende, una baja en las concentraciones del ión de sodio también provocan efectos osmóticos que pueden culminar en muerte celular o alteraciones morfológicas y fisiológicas. Los organismos que habitan en cuerpos de agua interiores salobres, en estuarios y en salitrales naturales o artificiales están expuestos a cambios significativos en salinidad. Por un lado, la precipitación pluvial, las escorrentías y los aportes de ríos ocasionan bajas en la salinidad. Por otro lado, la evaporación de agua, en áreas expuestas a una alta irradiación solar y bajos niveles de precipitación, provoca significativos en la salinidad. Aunque en el ambiente marino, las variaciones en salinidad son de mucho menor magnitud, éstas se pueden producir como resultado de: la mezcla de masas de agua con salinidades diferentes, la formación de precipitados insolubles que se hunden al suelo oceánico y la difusión de una masa de agua a otra. En el ambiente marino las salinidades son más variables cerca de la interfase agua-aire.
Solubilidad de gases: Aumentos marcados en la salinidad de un cuerpo de agua afectan la solubilidad de gases disueltos. Tal es el caso del oxígeno en los salitrales, donde la salinidad puede alcanzar valores mayores a 30%. La alta concentración de sales sumada a la altas temperaturas que se registran en dichos ambientes, explican el carácter anóxico de las charcas de evaporación solar. Las sales disueltas excluyen a las moléculas de oxígeno, al reducir los espacios intermoleculares disponibles reduciendo así la solubilidad de este gas en agua. En términos generales, en el agua de mar se registra una reducción de un 20% en los valores de saturación de gases disueltos, en comparación con los valores de saturación que se obervan para el agua destilada.
Componentes bióticos en ambientes hipersalinos: Los ambientes hipersalinos son considerados generalmente como ecosistemas con una baja diversidad de especies. Estos se consideran hábitats dominados por microorganismos procariotas. No obstante, aún se conoce muy poco de la cantidad de especies de bacterias halofílicas que coexisten en un mismo escenario ambiental. Se han identificado algunas arquebacterias y algas como habitantes autóctonos de ambientes hipersalinos. Estos organismos, considerados halofílicos extremos, son aparentemente permeables a la sal y sus enzimas están adaptadas a las condiciones de alta salinidad. Dichas enzimas requieren de sodio u otro catión para mantener su actividad catalítica. Las arquebacterias del género Halobacterium requieren iones de sodio para estabilizar su envoltura celular e iones de potasio para estabilizar la estructura y función de sus ribosomas. Para una descripción del ambiente físico y de los componentes bióticos de los salitrales en Puerto Rico refiérase a la Guía Ilustrada de Plancton.
No hay comentarios:
Publicar un comentario